Activation Dependence of Stretch Activation in Mouse Skinned Myocardium: Implications for Ventricular Function

نویسندگان

  • Julian E. Stelzer
  • Lars Larsson
  • Daniel P. Fitzsimons
  • Richard L. Moss
چکیده

Recent evidence suggests that ventricular ejection is partly powered by a delayed development of force, i.e., stretch activation, in regions of the ventricular wall due to stretch resulting from torsional twist of the ventricle around the apex-to-base axis. Given the potential importance of stretch activation in cardiac function, we characterized the stretch activation response and its Ca2+ dependence in murine skinned myocardium at 22 degrees C in solutions of varying Ca2+ concentrations. Stretch activation was induced by suddenly imposing a stretch of 0.5-2.5% of initial length to the isometrically contracting muscle and then holding the muscle at the new length. The force response to stretch was multiphasic: force initially increased in proportion to the amount of stretch, reached a peak, and then declined to a minimum before redeveloping to a new steady level. This last phase of the response is the delayed force characteristic of myocardial stretch activation and is presumably due to increased attachment of cross-bridges as a consequence of stretch. The amplitude and rate of stretch activation varied with Ca2+ concentration and more specifically with the level of isometric force prior to the stretch. Since myocardial force is regulated both by Ca2+ binding to troponin-C and cross-bridge binding to thin filaments, we explored the role of cross-bridge binding in the stretch activation response using NEM-S1, a strong-binding, non-force-generating derivative of myosin subfragment 1. NEM-S1 treatment at submaximal Ca2+-activated isometric forces significantly accelerated the rate of the stretch activation response and reduced its amplitude. These data show that the rate and amplitude of myocardial stretch activation vary with the level of activation and that stretch activation involves cooperative binding of cross-bridges to the thin filament. Such a mechanism would contribute to increased systolic ejection in response to increased delivery of activator Ca2+ during excitation-contraction coupling.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ablation of cardiac myosin-binding protein-C accelerates stretch activation in murine skinned myocardium.

Cardiac myosin binding protein-C (cMyBP-C) is a thick filament accessory protein that binds tightly to myosin, but despite evidence that mutations in the cMyBP-C gene comprise a frequent cause of hypertrophic cardiomyopathy, relatively little is known about the role(s) of cMyBP-C in myocardium. Based on earlier studies demonstrating the potential importance of stretch activation in cardiac cont...

متن کامل

Cardiac Myosin Binding Protein-C Phosphorylation Modulates Myofilament Length-Dependent Activation

Cardiac myosin binding protein-C (cMyBP-C) phosphorylation is an important regulator of contractile function, however, its contributions to length-dependent changes in cross-bridge (XB) kinetics is unknown. Therefore, we performed mechanical experiments to quantify contractile function in detergent-skinned ventricular preparations isolated from wild-type (WT) hearts, and hearts expressing non-p...

متن کامل

Protein kinase A-mediated acceleration of the stretch activation response in murine skinned myocardium is eliminated by ablation of cMyBP-C.

Beta-adrenergic agonists induce protein kinase A (PKA) phosphorylation of the cardiac myofilament proteins myosin binding protein C (cMyBP-C) and troponin I (cTnI), resulting in enhanced systolic function, but the relative contributions of cMyBP-C and cTnI to augmented contractility are not known. To investigate possible roles of cMyBP-C in this response, we examined the effects of PKA treatmen...

متن کامل

Differential roles of cardiac myosin-binding protein C and cardiac troponin I in the myofibrillar force responses to protein kinase A phosphorylation.

The heart is remarkably adaptable in its ability to vary its function to meet the changing demands of the circulatory system. During times of physiological stress, cardiac output increases in response to increased sympathetic activity, which results in protein kinase A (PKA)-mediated phosphorylations of the myofilament proteins cardiac troponin (cTn)I and cardiac myosin-binding protein (cMyBP)-...

متن کامل

Contributions of Stretch Activation to Length-dependent Contraction in Murine Myocardium

The steep relationship between systolic force production and end diastolic volume (Frank-Starling relationship) in myocardium is a potentially important mechanism by which the work capacity of the heart varies on a beat-to-beat basis, but the molecular basis for the effects of myocardial fiber length on cardiac work are still not well understood. Recent studies have suggested that an intrinsic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 127  شماره 

صفحات  -

تاریخ انتشار 2006